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Content sharing in cloud storage leads to multiple downloads of the same 

content when users synchronize devices. These downloads contribute to 

bandwidth waste and increase server workloads. Here, the authors investigate 

traffic generated by Dropbox and use data collected from four networks to 

show that a large fraction (57–70 percent) of downloads generated by Dropbox 

users is associated with content shared among multiple devices. They present 

an alternative synchronization architecture that uses caches to offload storage 

servers from such downloads. Their experiments show that the approach cost-

effectively avoids most repetitive downloads, benefiting service providers, the 

network, and end users.

C loud storage is currently one of 
the most popular Internet services, 
generating traffic volume that has 

been increasing at a fast pace.1 Indeed, 
the entrance of big companies (such as 
Google, Microsoft, and Apple) into this 
market confirms the lively scenario. 
Dropbox, a leader in the cloud storage 
market, has surpassed the mark of 400 
million users, uploading 1.2 billion files 
to the Internet every 24 hours in 2015.2

Such services offer a practical and 
safe environment for both domestic and 
enterprise users to store and share data, 
facilitating content organization and 
collaborative work. Yet, popular fea-
tures of these services — notably content 
sharing — pose an extra load for servers 
and the network, as data shared among 

multiple user devices might require sev-
eral transfers from remote servers. This 
holds even if devices are close to each 
other (for example, within a campus 
network), and despite Dropbox’s efforts 
to implement device-to-device synchro-
nization with the LAN Sync protocol.3 
Such downloads ultimately waste net-
work bandwidth and increase the work-
load at the cloud servers.

Cloud storage services employ mecha-
nisms to reduce network traffic, such as 
compression and deduplication.4 Although  
each of these mechanisms reduces the traf-
fic between the cloud and user devices by  
up to 24 percent,5 they don’t target con-
tent sharing and, as such, have limited 
effect on downloads of the same content 
to synchronize multiple devices. This is 
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worrisome given previous observations that down-
loads account for higher traffic than uploads in 
cloud storage.1,6

At the same time, Internet traffic in general 
presents significant redundancy7 caused by, for 
example, the download of a single content by 
multiple users. Web caching and content deliv-
ery networks are classical solutions to offload 
servers and remove cross-border traffic from 
the network. Intuitively, these solutions could 
be applicable to cloud storage as well. However, 
most cloud storage providers don’t implement 
any distributed synchronization architectures,4 
such as the deployment of caches nearby to end 
users who are connected far from datacenters. 
Is the traffic caused by content sharing sig-
nificant for providers and, if so, are content-
sharing characteristics such that caching could 
cost-effectively reduce its impact on servers?

In this article, we address to what extent con-
tent sharing in cloud storage leads to repetitive 
downloads from the cloud (and thus bandwidth 
waste) in current networks. This problem has 
only been discussed to date, though still in a 
preliminary manner, in our prior work.8 Here, we 
perform a thorough investigation of this issue. 
We characterize content sharing among Dropbox 
users relying on traffic traces collected in four 
distinct networks: two university networks (one 
in South America and one in Europe) and two 
points of presence (PoP) of a European ISP.

We also assess the impact of content sharing 
on cloud storage traffic by quantifying the down-
loads associated with the same content shared by 
multiple devices within the monitored networks. 
We find that a large fraction (57–70 percent) of 
the downloads from Dropbox servers falls into 
this category. Moreover, a significant fraction of 
such traffic (up to 25 percent of Dropbox related 
incoming traffic in the monitored networks) is 
likely caused by the download of content replicas 
and, therefore, is avoidable.

We then explore whether the introduction of 
network caches would reduce the number of avoid-
able downloads in a cost-effective way. We propose 
a modification to the synchronization architecture 
of Dropbox, introducing caches to temporarily 
hold user updates. We evaluate this architecture in 
various setups, considering both typical scenarios 
based on our datasets and simulations with larger 
user populations and/or content sharing.

We show that even a reasonably small cache 
(for example, 70 Gbytes) could offload servers 

from handling almost all avoidable downloads. 
Even more, our proposed architecture is cost-
effective: taking the traffic observed in one of 
our datasets, we find that 92 percent of the costs 
for serving avoidable downloads can be recov-
ered after discounting the costs of the cache. 
Moreover, such benefits tend to increase, reach-
ing 95–97 percent if we consider adequate cache 
sizes (for example, 280–500 Gbytes) and scenar-
ios where the cache is deployed to cover larger 
user populations (for example, at large ISPs) and/
or user populations sharing more content.

Overall, our results show that storage provid-
ers have incentives to deploy the caching-based 
architecture, which additionally would remove 
cross-border traffic from the Internet and reduce 
synchronization time for end users.

Content Synchronization in Dropbox
To begin, let’s look at how Dropbox synchro-
nizes content.

Basic Mechanisms
Dropbox synchronizes content by relying on two 
main concepts: devices and namespaces. Users 
can register several devices in the system. Dur-
ing this process, users select an initial folder 
from which files are synchronized with the 
cloud. This initial folder is visible from any other 
device belonging to the user. Users might share 
content with other users by creating shared fold-
ers, which are visible in all devices of all users 
participating in the sharing. Both initial folders 
and shared folders are the root of independent 
directory trees, where actual files are stored, and 
are called namespaces in the Dropbox system.9

We focus on the Dropbox desktop client, 
because it’s responsible for more than 75 percent 
of the Dropbox traffic in 2014.1 Devices using 
this client usually keep a local copy of all files 
present in the user’s namespaces. The addition 
of any content in a namespace triggers content 
propagation: all devices having the Dropbox 
desktop client and registering the namespace 
retrieve the content immediately if online, or as 
soon as they come back online.

Dropbox controls the status of namespaces by 
means of a notification protocol, which wasn’t 
encrypted until mid-2014. Each namespace 
is associated with a journal identifier (JID),  
representing its latest version. Devices discover 
when namespaces are outdated by periodically 
exchanging a list of namespaces and respective 
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JIDs with Dropbox servers. If any namespace is 
outdated, the device executes several transac-
tions with Dropbox servers until all namespaces 
become synchronized with the cloud.

We define an update as the steps that a device 
needs to take to move a namespace from a JID to 
its next JID value. Updates include files that have 
been added to the namespace and all metadata 
and commands that manipulate the namespace, 
such as to delete files and create folders.

By observing messages of the notification 
protocol, it’s possible to identify when namespaces 
are updated. Indeed, we developed a methodology 
in previous work10 to collect a long-term dataset 
about Dropbox namespaces, which includes the 
traffic volume exchanged in each JID transition 
of a large sample of namespaces — that is, an esti-
mation of the update sizes.

Synchronization Architecture with LAN Sync
Dropbox deploys the LAN Sync protocol for 
synchronizing devices in LANs, which might 
prevent downloads from the cloud. The proto-

col works as follows: First, devices periodically 
broadcast information about their namespaces. 
Any device in the LAN can form a list of pos-
sible neighbors for future synchronizations. 
Next, an outdated device checks the status of 
neighbors before retrieving updates from the 
cloud. Device-to-device synchronization takes 
place if the namespace is already updated in 
any device within the LAN.

The synchronization architecture of Drop-
box with LAN Sync is summarized in Figures 
1a and 1b. Devices in different LANs are kept 
synchronized, retrieving updates either from 
the cloud (solid black or red arrows) or from 
local peers using LAN Sync (orange arrows). In 
practice, however, typical campus and ISP net-
works are subdivided into multiple LANs — that 
is, Dropbox broadcast messages reach a limited 
number of devices. Moreover, devices sharing 
namespaces must be online simultaneously to 
allow the LAN Sync protocol to work effectively.

In Figure 1, some updates (solid red arrows) 
need to be retrieved from the cloud to synchronize  

Figure 1. Content synchronization in Dropbox current architecture with common cases of avoidable downloads from the cloud 
to synchronize devices: update generated (a) inside the network (Dev1 is offline) and (b) outside the network (Dev2 is offline, 
Dev 1 is back online and retrieves upd1 and upd2 from the cloud). Our proposal for an alternative synchronization architecture: 
update generated (c) inside the network (Dev1 is offline) and (d) outside the network (Dev2 is offline, Dev1 is back online and 
retrieves upd1 and upd2 from the cache).
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devices, even if the same updates have already 
been observed in the network — for example, 
when LAN Sync isn’t effective. We call those 
cases avoidable downloads. Avoidable down-
loads occur either because the update has been 
previously uploaded by a device in the network, 
or because multiple devices download a single 
update generated elsewhere.

Characterizing Avoidable Downloads
Next, we closely analyze data we captured, to 
better understand the effects and dimensions of 
downloads that are avoidable.

Datasets and Methodology
We rely on data captured and prepared in our pre-
vious work, where we modeled the workload of 
cloud storage.10 Different from that work, here we 
analyze content sharing and assess its impact on 
storage traffic. We collected the datasets by moni-
toring Dropbox traffic at four vantage points. Cam-
pus-1 and Campus-2 are distinct campus networks 
in South America and Europe. Campus-1 has a user 
population of ≈57,000 people, whereas Campus-2 
serves ≈15,000 people. PoP-1 and PoP-2 monitor 
customers at PoPs of a European ISP, aggregating 
≈25,000 and ≈5,000 households, respectively.

Our data includes flow-level information con-
taining the volume exchanged by clients with 
Dropbox servers, and metadata extracted from 
Dropbox notification messages. We collected the 
latter by means of deep packet inspection and 
include, for each notification, the device ID and 
the list of namespaces with respective device 
JIDs. Note that client IP addresses are ano-
nymized and notifications offer no hints about 
users’ identities. In total, we observed around 23 
Tbytes of Dropbox traffic, 27,428 unique Drop-
box devices, and 61,419 unique namespaces.

Dropbox clients exchange notifications with 
servers once a minute when online. When a 
namespace is updated, additional Dropbox traf-
fic appears in the network, and a notification 
message announcing the new JID is sent out by 
the client. We thus process traces (see also our 
previous work10) to estimate each update’s size, 
correlating flow volumes with notification mes-
sages, as follows:

•	 flows and notifications are first grouped per 
client IP address;

•	 flows and notifications overlapping in time 
form a synchronization cycle;

•	 synchronization cycles are classified as upload, 
download, or mixed, based on downstream and 
upstream volumes; and

•	 update sizes are estimated for clean cycles, 
while the remaining cycles are discarded.

We consider a synchronization cycle to be clean 
when a single device is active — either upload-
ing or downloading — given an IP address, or if 
multiple devices are active sharing an IP address, 
but a single namespace is changed. We assume 
the latter to be a typical network address trans-
lator (NAT) scenario, where one device uploads 
content that’s spread to peer devices. We know 
which devices are active even behind NATs, and 
the likely uploader, thanks to the device IDs found 
in notification messages. Among situations that 
prevent us from estimating update sizes, we high-
light multiple devices editing various namespaces 
simultaneously behind a NAT; and the synchroni-
zation happening when devices reappear online, 
which often involves many namespaces and both 
uploads and downloads. Finally, the volume in a 
clean cycle is divided equally among updates in 
the cycle, for simplicity.

Overall, we retain more than 63 percent 
of the Dropbox traffic for our analysis (see 
Table 1). We use the resulting dataset to study 
avoidable downloads. We track all updates of 
namespaces and mark downloads as avoidable 
when a namespace is updated to a specific JID 
in a device, and at least one other device regis-
tering the namespace has announced the same 
JID. Note that our methodology doesn’t take 
into account synchronizations performed using 
LAN Sync, because such traffic doesn’t reach 
our probes. We thus identify avoidable down-
loads after LAN Sync actuates.

Results
Table 1 lists results, including the number of 
namespaces shared by at least two devices in the 
monitored networks (that is, shared namespaces); 
traffic volumes retained for the analysis; traffic 
volumes associated with shared namespaces, and 
avoidable downloads; and datasets’ duration.

Shared namespaces. Table 1 shows that the 
percentage of shared namespaces in campuses 
(≥33 percent) is higher than in PoPs (≤26 per-
cent). The number of distinct devices register-
ing each shared namespace is, however, small. 
More than 90 percent of the shared namespaces 
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are registered by two devices only. The fraction 
of namespaces shared by at least three devices 
is somewhat higher in the campus datasets, 
reaching 7–9 percent. In the PoP datasets, this 
fraction falls to the 4–6 percent range. Such a 
difference is unsurprising and has been associ-
ated with the use of Dropbox for collaborative 
work in campuses, and the synchronization of a 
user’s different devices at home.10

We find that users’ interest on namespaces 
tends to last for a short time: after an initial 
period, the number of accesses (that is, updates 
and downloads) in a namespace becomes neg-
ligible. We illustrate this behavior in Figure 
2a by showing cumulative distribution func-
tions of the number of days between the first 
and last access in the first 60 days of life of 
namespaces. We refer to this time period as 
the namespace lifespan. Moreover, we focus on 
namespaces created during our captures and 

consider only namespaces seen online for at 
least 60 days.

Notice how all accesses occur on the day 
the namespace first appears for 22–27 percent 
of the namespaces. The median lifespan of a 
namespace is around one month. There is, how-
ever, a non-negligible number of namespaces 
with long lifespans: for example, around 20 
percent of the namespaces in PoP-1 still present 
activity 50 days after the first access. Yet, over-
all, we find that shared namespaces tend to have 
short lifespans — that is, their accesses occur 
with a strong temporal locality, which seems to 
favor the deployment of network caches.

Avoidable traffic. Table 1 shows a high vol-
ume of downloads in all datasets. We observe 
that 44–68 percent of the traffic corresponds to 
downloads, and 57–70 percent of such download 
traffic belongs to shared namespaces. This raises 

Figure 2. Shared namespaces lifespan and volume of avoidable downloads per namespace update.  
(a) Cumulative distribution functions of shared namespace lifespans. (b) Cumulative distribution functions of 
traffic volume associated with avoidable downloads (log scale on the x-axis).
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Table 1. Uploads and downloads in Dropbox (note the shared and avoidable volumes).

Dataset
Shared 
namespace

Retained volume* (Gbytes) Shared namespaces volume** (Gbytes)

MonthsUpload Download Total Upload Download Avoidable

Campus-1 3,787 (36%) 1,304 (77%) 2,282 (60%) 3,586 (65%) 605 (46%) 1,425 (62%) 411 (18%) 3

Campus-2 3,254 (33%) 326 (53%) 443 (44%) 769 (47%) 129 (40%) 253 (57%) 74 (17%) 3

PoP-1 7,514 (26%) 2,604 (67%) 3,909 (57%) 6,513 (61%) 1,482 (57%) 2,601 (67%) 761 (19%) 7

PoP-2 2,925 (24%) 1,850 (77%) 2,558 (68%) 4,408 (72%) 1,077 (58%) 1,801 (70%) 637 (25%) 11

Total 17,480 (28%) 6,084 (71%) 9,192 (60%) 15,276 (64%) 3,293 (54%) 6,080 (66%) 1,883 (20%) –

*Percentages refer to the dataset before discarding updates. Differences are compatible with the prevalence of network address translators (NaTs) 
in the networks.
**Percentages refer to the sample in which we can estimate update sizes.
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a question about how much traffic is associated 
with content replication. Not all downloads are 
avoidable, because devices might retrieve con-
tent uploaded in other networks, for example, 
when a user has remote devices, or namespaces 
shared with users located somewhere else. We 
see, however, that the percentage of avoidable 
downloads is quite significant. Overall, we find 
that up to 25 percent of the Dropbox download 
traffic happens to synchronize content that has 
been observed in the same network.

Figure 2b presents the total download vol-
ume that’s avoidable per update. Note that most 
updates that cause such downloads generate lit-
tle traffic. Yet, a non-negligible portion results 
in large volumes. For example, while 25 percent 
of the updates in Campus-1 generate at least 100 
Kbytes of replication, more than 3 percent of 
the updates surpass 10 Mbytes, reaching up to 1 
Gbyte of replication.

Summary. Our analysis confirms that downloads 
dominate Dropbox traffic, and a significant part 
of such downloads is avoidable, contributing to 
increased costs for the provider. Table 1 shows 
significant percentages of avoidable downloads 
in four networks, each with a different preva-
lence of NATs, indicating that results aren’t influ-
enced by the data discarded by our methodology 
to estimate the size of updates.

Shared namespaces have a limited lifespan. 
Updates on those namespaces are typically small 
and present strong temporal locality. These results 
motivate us to investigate next whether the intro-
duction of network caches could reduce the num-
ber of avoidable downloads in a cost-effective way.

A New Synchronization Architecture
We propose a new synchronization architecture 
for cloud storage that consists of introducing 
network caches to temporally hold user updates 
in the network. We aim to enable device syn-
chronization, without the need to retrieve con-
tent from the cloud in scenarios where the LAN 
Sync protocol is ineffective. Figures 1c and 
1d illustrates our proposal in the same cases 
shown in Figures 1a and 1b. A storage cache is 
installed to cover several networks and possibly 
thousands of customers — for example, multiple 
LANs in a large campus, complete ISP networks, 
or multiple PoPs. As a consequence, devices can 
potentially find updates without retrieving con-
tent from the cloud.

Synchronizing devices using the storage 
caches works as follows. The discovery of caches 
is orchestrated by Dropbox protocols when devices 
log in to the system. Dropbox servers inform 
clients about the closest cache in the network. 
Devices always send updates in namespaces to 
the closest cache (see Figure 1c, step 1). The cache 
stores updates locally, also forwarding them to 
the cloud. As soon as devices receive notifications 
about updates, they contact the closest cache. If 
the pending updates exist in the cache (that is, a 
cache hit), the cache delivers the content directly 
to devices. Otherwise (that is, a cache miss), the 
cache retrieves the content from the cloud and 
forwards it to the requesting devices (see Figure 
1d, steps 2 and 3). After any request from a client, 
the cache executes internal replacement policies 
to guarantee that the most likely useful content is 
available locally. Any caching replacement policy 
could be employed for that matter (see the book by 
Michael Rabinovich and Oliver Spatschek for ref-
erences11), and an evaluation of the best caching 
policy is outside the present scope.

We envision the caches being deployed and 
controlled by cloud storage providers directly. 
Moreover, we don’t assume any particular deploy-
ment topology. The location of caches in the 
network would be a choice of operators, and the 
only requirement is that clients must have routes 
to reach the caches. The extensions needed in 
Dropbox protocols to diverge traffic to caches, as 
well as other aspects related to the architecture’s 
implementation, are also out of our scope. Finally, 
we evaluate next whether the caching approach 
is cost-effective for storage providers, considering 
the cache costs and resulting bandwidth savings. 
Equally important questions, such as the privacy 
risks and the management overhead of deploy-
ing caches in several locations, are left for future 
work.

Evaluation Methodology
We evaluate the architecture using both our 
datasets and synthetic traces. We first use real 
traces to study whether storage caches are cost-
effective in typical campus and ISP networks. 
Then, we rely on synthetic traces to extrapolate 
measurements and understand how costs and 
benefits vary when large populations are cov-
ered, or more sharing is seen in the network.

For the synthetic traces, we create an envi-
ronment as in Figure 1. A number of devices act 
independently, performing updates that trigger 
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several downloads. A network cache is deployed 
to cover the devices. It intercepts updates, 
potentially serving content without involving 
the cloud. For simplicity, we assume all content 
is uploaded from the simulated environment — 
that is, external devices produce no workload to 
be downloaded.

We rely on CloudGen for creating synthetic 
traces. CloudGen is a synthetic workload gener-
ator for cloud storage services presented in our 
other work.10 CloudGen allows us to realistically 
reproduce the traffic created by arbitrary popu-
lations of Dropbox devices, based on param-
eters learned from traffic traces (for example, 
devices’ sessions duration). CloudGen generates 
a synthetic trace, indicating when each device 
is online, the updates in each namespace, and 
the data volume associated with each update.

We generate four types of synthetic traces:

•	 Typical workload. We set CloudGen to the 
number of devices observed in our datas-
ets to illustrate how the synthetic workload 
compares to real traces.

•	 High population. We simulate large popula-
tions by tripling the number of devices — that 
is, roughly equivalent to having a Dropbox 
client in every IP address observed in Cam-
pus-1. Both upload and download volumes 
grow linearly with the number of devices.

•	 High sharing. We triple the mean number of 
devices sharing each namespace. The scenario 
mimics environments where users share lots 
of namespaces — for example, hypothetical 
companies adopting cloud storage as network 
file systems. Larger numbers of devices per 
namespace increase only download traffic.

•	 High population and sharing. We combine 
the previous two scenarios. Uploads grow 
linearly with the number of devices, while 
downloads grow as much as 20 times when 
compared to the typical scenario.

We calculate savings considering different 
cache sizes for both real and synthetic traces. We 
use the first month in each dataset of real traces 
to warm up the cache, and assess savings in sub-
sequent months. For synthetic scenarios, we gen-
erate two-month-long intervals (warm up and 
evaluation) in 16 experiment rounds, and report 
mean values with 95 percent confidence intervals.

In all experiments, we use the simple and 
yet popular least-recently-used (LRU) policy: 

cache insertions and evictions are triggered 
by uploads; downloads manipulate the order 
of items (that is, updates) in the LRU cache, but 
don’t change cache contents. Finally, by track-
ing updates and cache behavior, we identify 
whether an update should be retrieved from the 
cache or cloud.

Performance of the Cache-Based 
Architecture
Now that we’ve detailed the architecture, let’s 
look at its performance.

Bandwidth savings. First, let’s consider the 
bandwidth savings obtained with our cache-
based architecture, focusing on Campus-1’s real 
trace, as well as on several synthetic traces gen-
erated using CloudGen (parameterized accord-
ing to that dataset). We omit results for the other 
datasets for the sake of brevity. Yet, conclusions 
in the following hold for all of the datasets.

We evaluate bandwidth savings using the 
byte hit ratio metric, which is computed as the 
volume of downloads served by the cache over 
the total volume of downloads reaching the cli-
ents. Figure 3a reports the byte hit ratios for two 
months extracted from the real trace (dashed 
purple curves) as well as a synthetic trace in the 
typical scenario (continuous black curve).

The differences between the two months in 
real traces are due to normal variations in the 
workload: month 3 presents higher volume in 
shared namespaces than month 2, which reduces 
the byte hit ratio, as we discuss next. Despite 
some divergences, the synthetic traces capture 
reasonably well the overall trend in real data. 
Such divergences are due to multiple factors. 
First, the synthetic trace is built by configuring 
CloudGen with input parameters extracted from 
the complete Campus-1 trace, as opposed to a 
subtrace corresponding to a particular month. 
Thus, it captures an overall trend observed dur-
ing the whole three-month period, and not the 
particular behavior in shorter periods. More-
over, some simplifying assumptions made in the 
design of CloudGen contribute to the divergences, 
particularly for small caches. For instance, 
CloudGen assumes that devices behave indepen-
dently, which might not be always the case. Mul-
tiple devices sharing namespaces might be online 
simultaneously, favoring the caching approach.

Yet, despite such divergences, we still see 
overall common trends. For example, for both 
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real and synthetic workloads, even a small cache 
is able to remove a large fraction of avoidable 
downloads. In fact, a cache of 1 Gbyte would 
achieve from 21–56 percent of the byte hit ratio. 
Moreover, in all three curves, the byte hit ratio 
surpasses 90 percent with a 70-Gbyte cache.

Having compared real and synthetic traces 
in the typical scenario, we focus on the latter to 
evaluate the proposed architecture in other sce-
narios. Results are in Figure 3b. We note that, 
for any given cache size, the byte hit ratio is 
higher in the typical scenario than in any of 
the other three scenarios. This is because work-
loads are heavier in other scenarios, resulting 
in more cache misses. When the population size 
is increased, the larger upload volumes force 
the cache to remove old updates more often. In 
the high sharing scenario, the larger number 
of devices downloading content (that is, shar-
ing namespaces) increases the probability that 
a device will fail to find a particular content in 

the cache, because the content has already faced 
eviction. Cache savings decrease even more in 
the high population and sharing scenario, as 
both factors are present. Nevertheless, despite 
such variations, our proposed architecture pro-
vides significant bandwidth savings in all sce-
narios. For example, for a 10-Gbyte cache, the 
byte hit ratio varies from 24–57 percent.

Overall, we conclude that even a modest 
cache can remove most of the Dropbox avoid-
able downloads when deployed in a typical net-
work. As larger scenarios are considered, the 
cache size to achieve similar savings needs to 
be adjusted.

Cost-benefit tradeoff. The tradeoffs of deploy-
ing our architecture involve the cache costs and 
savings achieved by removing downloads from 
the cloud. In other words, an effective cache 
should prevent avoidable downloads at a mini-
mum cost.

Figure 3. Performance of the cache-based architecture in various scenarios. (a) Real and synthetic.  
(b) Synthetic scenarios. (c) Storage prices are half of the bandwidth prices (β/α = 1/2). (d) Storage prices are 
equal to bandwidth prices (β/α = 1).
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We evaluate costs and benefits of the archi-
tecture by computing the relative cost savings 
(rcs) for a time interval t:

= −rcs  cost _ nocache   cost _ cache
cost_nocache

,t t t c

t

,

where cost_nocachet is the cost to serve all 
avoidable downloads in the time period t, while 
cost_cachet,c corresponds to the cost associated 
with deploying a cache of size c bytes during 
time period t.

In short, rcst captures the fraction of the costs 
to serve avoidable downloads that the architec-
ture can recover. The architecture is effective 
when rcst > 0; that is, the savings obtained by 
removing avoidable downloads at least pay off 
the costs associated with maintaining the cache. 
Note that rcst has an upper bound (rcst = 1) that 
indicates a scenario where all avoidable down-
loads are removed at negligible costs.

For the sake of simplicity, we express the 
cost_nocache and the cost_cache as functions 
of the number of bytes transmitted over the 
network and stored in the cache:

cost_nocachet = dt ∗ α
cost_cachet,c = mt,c ∗ α + c ∗ β,

where dt is the total number of bytes associ-
ated with avoidable downloads observed in the 
period t, mt,c is the number of bytes associated 
with avoidable downloads that a cache of size 
c bytes misses during time t, and α and β rep-
resent bandwidth and storage prices per byte, 
respectively.

We take as reference for α and β the prices 
for bandwidth and storage offered by Amazon 
Simple Storage Service and Elastic Compute 
Cloud (S3/E2C),12 which already include opera-
tional costs. Based on that, we evaluate rcst on 
two distinct cost setups, defined by the ratio 
β/α: the price per byte of storage is a half of 
the bandwidth (that is, β/α = 1/2), for example, 
because magnetic storage is used; and both 
prices are the same (that is, β/α = 1), for exam-
ple, SSD storage is taken. We use Amazon S3/
E2C as reference because many storage provid-
ers rely on it to build their services. Other refer-
ences (for example, market prices for SSD disks 
and mobile data plans) provide more optimistic 
cost-benefit tradeoffs.

Figures 3c and 3d show the rcst for the four 
scenarios and the two price ratios considering t 

equal to one month. The value of rcst increases 
to a maximum and then decreases. The inflec-
tion occurs when the best tradeoff between 
costs and benefits is achieved. Compared to Fig-
ure 3b, we see that the decrease in rcst happens 
despite higher byte hit ratios. Therefore, caches 
larger than a certain threshold add costs to the 
system, without providing significant savings.

Figure 3c (β/α = 1/2) shows that rcst reaches 
92–93 percent for typical and high population 
scenarios with cache sizes of 70 and 200 Gbytes, 
respectively. Scenarios with higher sharing 
achieve slightly better rcst. The maximum rcst 
reaches 95 percent for a 280-Gbyte cache in the 
high sharing scenario, going up to 97 percent in the 
high population and sharing scenario with a 500-
Gbyte cache. Better tradeoffs with higher sharing 
are explained by the large volume of downloads: 
even if the byte hit ratio is lower than in typical 
scenarios for certain cache sizes (see Figure 3b for 
100-Gbyte caches), the volume saved with avoid-
able downloads pays back the investment.

It’s worth noting the effects of the ratio 
between storage and bandwidth prices: the 
higher the storage price (compared to band-
width), the lower the advantage of deploying 
the architecture. Comparing Figures 3c and 3d, 
we see that the maximum rcst slightly decreases 
for β/α = 1; for example, it’s 7 percent lower 
than for β/α = 1/2 in the typical scenario. 
Moreover, the costs of overestimated caches 
become equivalent to the bandwidth savings 
faster when storage costs are high.

In sum, our proposal cost-effectively achieves 
high bandwidth savings in a typical scenario, 
where 92 percent of the costs relative to avoid-
able downloads can be recovered. Storage pro-
viders thus have an incentive to deploy the 
caches, because savings by far compensate the 
costs. Benefits are higher with high-sharing (rcst 
reaches up to 95–97 percent), which hints to net-
works where cloud storage providers should start 
deploying the architecture.

W e showed that content sharing in cloud stor-
age services causes an expressive volume of 

avoidable traffic to providers. We proposed the 
use of network caches for content synchroniza-
tion aiming at reducing this traffic. Our analyses 
suggest that even a small cache yields very high 
bandwidth savings. Such savings potentially 
cover the costs associated with building up the 
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system, thus calling on cloud storage providers 
to consider the deployment of the architecture as 
a competitive advantage to their services. Future 
directions include analyzing privacy risks and 
the management overhead of deploying storage 
caches in different locations. This will require 
new models and simulations to support provid-
ers’ decisions on where to deploy caches. 
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