
SDCCN: A Novel Software Defined
Content-Centric Networking Approach

Sergio Charpinel, Celso Alberto Saibel Santos
Magnos Martinello and Rodolfo Villaca
Federal University of Espirito Santo (UFES)

Vitoria/ES, Brazil
{scjunior, saibel, magnos}@inf.ufes.br, rodolfo.villaca@ufes.br

Alex Borges Vieira
Federal University of Juiz de Fora (UFJF)

Juiz de Fora/MG, Brazil
alex.borges@ufjf.edu.br

Abstract—Content Centric Networking (CCN) represents an
important change in the current operation of the Internet,
prioritizing content over the communication between end nodes.
Routers play an essential role in CCN, since they receive the
requests for a given content and provide content caching for the
most popular ones. They have their own forwarding strategies
and caching policies for the most popular contents. Despite
the number of works on this field, experimental evaluation
of different forwarding algorithms and caching policies yet
demands a huge effort in routers programming. In this paper
we propose SDCCN, a SDN approach to CCN that provides
programmable forwarding strategy and caching policies. SDCCN
allows fast prototyping and experimentation in CCN. Proofs of
concept were performed to demonstrate the programmability
of the cache replacement algorithms and the Strategy Layer.
Experimental results, obtained through implementation in the
Mininet environment, are presented and evaluated.

I. INTRODUCTION

The engineering principles and architecture of today’s In-
ternet were created in the 1960s and ‘70s to solve resources
sharing problems. These resources were shared among expan-
sive and scarce devices. The resulting communication model
was a communication in pairs [1]. Despite patches made
over decades, the base of the communication model has not
practically changed.

One of the perspectives of Content Delivery Networks
(CDNs) is that these networks will carry 60% of Internet’s
traffic in 2019 and video traffic will correspond to more than
80% of the Internet traffic in 2019 [2]. The report points out
that the user is interested in the content (“what”) while today’s
communication is still based on location (“where”).

In this context, Content-Centric Networking (CCN) emerges
as a new abstraction for the current communication, providing
addressing, routing and security based on the content and
native cache provided by the network.

Although CCN is a “clean-slate” architecture, it inherits
from TCP/IP the lack of flexibility and the difficulty of ex-
perimentation in production networks. The cache replacement
algorithm and the Strategy layer are not flexible enough to be
modified at runtime or even allow the execution of different
strategies for multiple nodes without manually modifying
CCN routers code. The protocols are also “hardcoded” in
the routers, requiring considerably more effort to evolve the

architecture. And finally, router management and configuration
in a manual and expensive task for develloppers.

This paper presents a novel approach using Software De-
fined Networks aiming to add flexibility to CCN routers.
Our SDCCN (Software Defined Content Centric Network)
approach has three major contributions: (i) it supports pro-
grammable forwarding and caching in CCN; (ii) eliminates
the need for mappings between content names and identifiers,
by natively processing content names with varying sizes
through the POF (Protocol Oblivious Forwarding) protocol and
(iii) provides a simulated prototyping environment based on
Mininet for carrying out experiments and innovative solutions
in CCN.

The rest of this paper is divided in the following way:
Section II discusses and compares some related work to the
proposed SDCCN. Section III shows the architecture of the
SDCCN solution. In Section IV implementation details are
shown. Section V introduces the experimental results obtained
in SDCCN scenarios. Finally, Section VI concludes the paper
and presents proposals for future work.

II. RELATED WORK

COntent NETwork (CONET) [3] extends the CCN approach
in various aspects, such as integration with IP, routing scalabil-
ity, use of new mechanisms for transport, inter-domain routing
and integration with the SDN architecture using OpenFlow [4].
To work around the problem of processing variable length
content names, CONET maps content name to an identifier
(TAG) and uses this TAG for routing content packets. This
work does not include cache programmability and content
name mapping to TAG breaks the aggregation of hierarquical
names in routing.

Nguyen et al. [5] proposes an SDN architecture for CCN
for implementation of “off-path caching”, which consists on
caching only the most popular contents. The control plane gets
the most popular contents, defines in which nodes they should
be cached and install forwarding rules. SDCCN provides a
more flexible approach for implementing “off-path caching”.

Vahlenkamp et al. [6] proposes an SDN solution for gradual
integration of Information-Centric Networking in IP networks.
They use a network address publicly routable per domain,

called ICNP, for each SDN node and an ICN identifier that
will be used in the UDP or TCP ports fields. This solution also
envolves content name mapping, bringing all of the mentioned
drawbacks. Cache programmability is not discussed.

Our approach mainly differs from the previous works be-
cause it simultaneously: (i) eliminates the need for mappings
between content names and identifiers, processing natively
content names with varying sizes; (ii) provides programmable
cache replacement algorithms; (iii) allows proactively instal-
lation of content in caches; (iv) allows implementation of
CCN protocols in the network elements in an agnostic way;
(v) provides a simulated environment based on Mininet for
prototyping programmable CCN in an easy and scalable way.

III. SDCCN ARCHITECTURE

The SDCCN architecture is composed by users (producers
and consumers of content), CCN switches (we will call they
routers as well) and a CCN controller (logically centralized).
There are two types of packets: Interest packets, which are
used to request content, and Content packets, used to provide
content. Consumers request content sending Interest packets
on the network. Switches forward packets and keep in cache
the most popular content. Controllers manage the switches
programming the forwarding of the Interest packets and the
Content Storage. Content providers answer Interest requests
sending Content packets and also disclose content names
prefixes they produce contents on.

A SDCCN switch is composed by: (i) a FIB (Forwarding
Information Base) to store forwarding rules related to the
Interest packet forwarding; (ii) a Cache Rules Table (CRT)
for storing cache rules that inform what content should be
stored in cache; (iii) a Content Store (CS) for storing content;
and (iv) a PIT (Pending Interest Table) used to group Interest
requests that have not received a corresponding content yet
and to forward Content packets.

The controller uses well known SDN protocols and is able
to modify SDCCN tables, request information about them,
modify cache replacement policies on the fly, allocate different
caching policies to different nodes and install more efficient
forwarding strategies, since it has a complete view of network.

A. Forwarding

The activity diagram shown in Figure 1(a, b) gives an
overview of the packet forwarding in SDCCN. A host requests
content sending a Interest packet for the content on the
network. When a switch receives this packet, it first checks
whether the requested content is stored in its CS. If the switch
CS has the content, it returns the corresponding Content packet
(data) to the switch port that the Interest packet was received.
Otherwise, it checks if there is any pending Interest in its
PIT and, if so, it adds the interface id to the correponding
PIT entry and discards the packet. Otherwise, it forwards the
Interest packet to the next switch consulting its FIB and stores
a new entry in its PIT containing the content name and the
interface id from where the pending Interest was received. If
the switch does not find a matching entry in the FIB, it queries

(a) Interest forwarding.

(b) Content forwarding.

Fig. 1. Activity diagram of packet forwarding in a SDCCN network.

the controller which determines how the forwarding should be
done and installs forwarding rules in the FIB of the switches.

Once the Interest packet has reached a switch with a valid
content in cache, or reaches the producer, a corresponding
Content packet is sent back. The content packet is forwarded
following PIT entries and therefore it follows the same route
of the corresponding Interest packet. Switches also check its
CRT to verify whether this content must be stored in the CS.

The Strategy layer is responsible for defining Interest packet
routing based on optimized choices, such as sending packets
to different ports simultaneously in order to achieve shorter
response time. Moreover, it is also responsible for resending
timed out Interest packets using different strategies. In the
original proposal of the CCN [1], it is recognized that there
is not a routing strategy that is best for all cases. Thus, the
original intention was to add in each entry of the FIB a

program written in a specialized language in packet forwarding
decisions which would determine how the routing would be
done. The Strategy layer definition brings the forwarding
programmability concept and SDCCN uses an already known
and SDN protocol to implement it, providing a more reliable
and stable solution.

B. Cache

Several studies have been made to find the best solution for
cache in CCN ([7], [8]). Many of these studies propose the
use of different replacement cache policies for nodes located
on the edges and nodes located in the core of the network.
However, in CCN networks changes in replacement policies
are costly, once they need manual firmware updates. The
SDN approach facilitates this implementation because caching
replacement algorithms are defined in the control plane. Also,
the controller has an overview of the network topology and
content distribution can provide more customized and dynamic
solutions. Moving cache decisions to the control plane through
a standardized interface facilitates experimentation and com-
parison of different cache policies aiming to improve network
performance in content retrieval.

A SDCCN switch will only store a content in its CS if it has
a rule in its CRT. CRT also supports the use of wildcard rules.
When the CS becomes full or reaches a configurable threshold,
the switch notifies the controller by sending a control message.
The controller may remove content stored in the CS following
any custom logic, allowing the definition of cache replacement
algorithms in the control plane.

The controller can also proactively install contents in the
CS, that is, without even receiving a corresponding Interest
packet. This approach is very useful in some situations, such
as when we can predict certain content will have great chances
of being asked by multiple nodes in a network, like the release
of a blockbuster content, or in face of user mobility when
transmitting a twitcasting in a popular event.

IV. SDCCN IMPLEMENTATION

Data plane and Control plane communicate through the
Protocol-Oblivious Forwarding (POF) [9] protocol. POF al-
lows routing content names of variable sizes. Moreover, the
data plane does not need to recognize any frame format. Pro-
cessing flows is similar to OpenFlow, however in OpenFlow
the search is done using known protocols fields. In POF, the
search is made comparing bytes of a field, defined by the tuple
{offset, size}, with bytes presented in tables rules. POF also
supports all messages of the OpenFlow protocol.

By using POF, CCN messages can be implemented in a
agnostic way in network elements. In other words, you can
change the format of the CCN packets without changing the
code of CCN switches. Messages such as neighbor discovery,
repository synchronization, etc., may have its format changed
without modifying the data plane.

In the data plane, POF switch has been extended to support
SDCCN messages. In addition to the existing FIB, the CS,
CRT and PIT have been added to the POF implementation. We

further discuss the current format of these tables in Sections
IV-A and IV-B.

We developed an environment for rapid prototyping and
experimentation in CCN based on Mininet [10]. It is possible
to create CCN nodes running the official CCNx project [11]
implementation. The current implementation supports all rout-
ing and cache messages described in Sections IV-A and IV-B.

A. Forwarding

A set of messages and actions of POF protocol are ex-
tended and used to provide programmable routing. A new
message was added to POF for implementation of Interest
retransmissing, managed by the Strategy layer. The message
INTEREST INFO is used by switches to signal to the con-
troller that an Interest request was timed out.is detailed below:

The current PIT format can be shown in Figure 2(a). Source
ports of pending Interests are store in the “ports” field as well
as its number in “nports” field. The “created date” field is
used for the pending Interest timeout.

(a) PIT format.

(b) FIB format.

Fig. 2. PIT and FIB format.

POF flow table was used for FIB implementation. As shown
in Figure 2(b), each FIB entry consists of rules, actions and
statistics data like bytes and packets counters. The rule has
a content name and a bit mask that will indicate whether
the corresponding bit of the content name will be considered
during forwarding lookup (byte “0xff”) or not (byte “0x00”).
Each rule implies in one or more actions, such as packet output
to some port or write bytes to packets.

B. Cache

New messages have been added to the CCNx implementa-
tion to support cache programmability. New messages are:

• CACHE MOD: Message used to modify the CRT (add,
remove and modify cache rules).

• CS MOD: Message used to modify the CS (add, remove
and modify content in cache).

• CACHE FULL: Message used by the switch to indicate
to the controller that a CS is full or nearly full.

• CACHE INFO: Message used by the controller to query
CRT data.

• CS INFO: Message used by the controller to query CS
data.

The current formats of CS and CRT are illustrated in
Figure 3. In CS, “created date” and “last update” fields are
used for cache replacement algorithms and can be retrieved
using CS INFO message. In CRT, “cs mod” field is used for
proactive installation of content in CS, as following: upon
receiving a CS MOD message with ADD command, the
switch sends an Interest packet to the content specified in the
message. To store the content in the CS, the switch creates
a CRT entry with “cs mod” equals to 1. When the switch
receives the corresponding Content packet and checks CRT to
verify if the content should be saved, it will find an entry with
“cs mod” set to 1 and will remove this entry after saving the
content in CS, avoiding saving undesirable contents in future.

(a) CS format.

(b) CRT format.

Fig. 3. Current format of the CS and CRT.

V. PROOF OF CONCEPT AND EXPERIMENTAL RESULTS

The proof of concept is structured in two parts. The first
part demonstrates the programmability of packet forwarding
and caching.

In the first experiment, two different cache replacement
policies are implemented and programmed directly in the
control plane. Then, the results of cache hit ratio of both
are compared in different situations with different content
popularity characteristics. The second experiment shows the
Estrategy Layer operation, exemplified by the use of dynamic
forwarding policies.

The second part is dedicated to experimental results of
the implemented prototype, with focus on the exploration
of different scenarios involving the proactive installation of
contents in caches, cache aggregation and load balancing.

A. Proof of Concept development

1) Cache replacement policies implementation: In SDCCN
architecture, cache replacement policies are defined in the
control plane. This enables the implementation of customized
or specific policies for certain scenarios, such as the definition
of different policies for nodes located at different areas of the
network (core and edge for example) and the change in real
time the cache replacement policies. Moreover, the controller
has an overview of the network and of contents cached in
its managed switches. It may use these informations to create
more advantageous cache replacement policies.

The cache replacement policy decides which content will
be removed from CS. So the controller needs to retrieve
information about cached contents, run some algorithm that

decides which contents shall be removed and remove these
contents. When a Content arrives on the switch, it checks if
its CS utilization is above the configured limit. If so, sends a
CS FULL message to the controller, signaling the high utiliza-
tion. The controller requests CS data by sending a CS INFO
message. When it gets the reply, it runs a cache replacement
algorithm and removes contents using the CS MOD message.

The experiment aims to evaluate implementation of cache
replacement policies in the control plane. The topology is
composed by two hosts (h1, h2) and one SDCCN switch.
Links between the SDCCN switch and hosts were defined with
delay of 10ms. Host h1 runs ccnpingserver application and
host h2 makes ccnping [12] requests in CCN network. Due
to link delays, a ccnping request passing through two hosts
must have a RTT around 40ms. If the switch had the content
of the corresponding ccnping request stored in its CS, then the
RTT must be around 20ms.

The CS was limited to 50, 100 and 200 entries and the
limit for sending warning alerts (OFPCFAC WARN) was set
to 5 entries. Forwarding rules have been added to h1 FIB
for forwarding Interests with the prefix “ccnx:/UFES” to h2.
Caching rules have been added to h2’s CRT for storing any
content with the prefix “ccnx:/UFES”, which was also used as
prefix for ccnping. The names of the generated ccnping content
followed the pattern “ccnx:/UFES/[N]”, where [N] is a positive
integer randomly generated. This number was generated using
a Zipf-like distribution with α equal to 0.6, 0.7, 0.8, 0.9 and
1.0 (as suggested in [8]).

In the beginning of the experiment, the CS is empty and the
CRT has an entry to store ccnping contents. So each content
passing through the switch is stored in its CS.

For each cache replacement algorithm and each CS limit
configuration, 1000 requests were generated. The experiment
was repeated 5 times for average and confidence interval
(confidence level of 95%) calculation. Table I shows the cache
hit rate for each value of α for FIFO and LRU algorithms
respectively. We can see that the LRU algorithm achieved a
slightly higher hit rate for all values of α. However, the impact
on hit ratio of the parameter α (content popularity) was more
significant than the cache algorithms.

When CS was limited to 50 and 100 entries, the difference
between the cache algorithms was around 12% for all values of
α. With CS limited to 200 entries, this difference decreased to
approximately 9%. The average increase with the variation of
α from 0.6 to 1.0, for both cache replacement algorithms, also
tends to decrease when increasing the cache hit ratio (either
when α increases or when CS capacity increases). Figure 4
shows the number of requests that had RTT inside the intervals
of 0–30ms for all values of α and all CS configurations. Note
that the performance of the LRU algorithm was better, as
expected for this scenario. A little variation on (α = 0.6 to
α = 1.0) increases substantially the number of requests with
small RTTs (hits).

These results show that the impact of the content popularity
can be more effective in performance gain than the cache
replacement policy. However, we emphasize that the main

TABLE I
COMPARISON OF AVERAGE RTT AND CACHE HIT RATIO FOR LRU E FIFO POLICIES.

(a) CS limited to 50 entries. (b) CS limited to 100 entries. (c) CS limited to 200 entries.

(a) CS limited to 50 entries. (b) CS limited to 100 entries. (c) CS limited to 200 entries.

Fig. 4. RTT comparison for FIFO (blue) and LRU (red) cache policies.

contribution of this experiment is the dynamicity the SDCCN
architecture gives to build cache replacement policies without
reprogramming the switches.

B. Implementation of Strategy Layer forwarding policies

The Strategy Layer is responsible for Interests routing. In
SDCCN, the Strategy Layer is composed by the instructions,
actions and events that are used in the communication between
the data plane and the control plane. Its operation is defined
in the control plane in order to incorporate all of the benefits
of the packet forwarding programmability presented in SDN
architectures. In addition, the Strategy Layer takes advantage
of the overview offered to the control plane and can make
smarter decisions,

The Strategy Layer encompasses all decisions involving the
Interest routing, such as dynamic and static routing and node-
to-node Interest retransmission. Upon receiving an Interest in
the network, the switch forwards the packet following FIB
entries. These entries are defined by a routing algorithm,
which runs in the control plane. If the switch has not re-
ceived a corresponding Content after waiting a maximum
waiting time, set previously, it signals the controller sending
a INTEREST INFO message. The controller runs a routing
algorithm and sets the new routing, modifying FIB entries
through FLOW MOD messages. After, the switch resends the
Interest packet, following the new FIB rules installed.

C. Experimental results

Content caching programmability supported by SDCCN
architecture brings numerous benefits compared to the orig-
inal CCN architecture, among which we highlight: (i) the
possibility of proactive caching; (ii) a global view for cache
aggregation; (iii) native support for load balancing.

Proactive caching refers to the ability of the controller to
request the caching of a particular content in a switch without

an Interest has gone through this switch. The controller
can install content via a direct connection to the switch or
requesting the switch to make a request for such content on
the network (sending an Interest packet on the network).

The decision of where to cache a content on the network
is difficult because it may depend on several factors such
as delay of links, size of the CSs and their occupation,
network topology. The closer the end-user is to the content,
the shorter the response time. However, the closer the content
is to the end user, the greater the chance that this content is
duplicated on different nodes. SDCCN makes this decision
much easier because the control plane has information of the
network topology and can request data about the tables of each
managed node.

Load balancing is natively supported by SDCCN due to POF
protocol features used. As the search in POF is done using byte
and offset, it is possible to load balance packet forwarding by
content name prefixes and even chunks. The same can be done
to balance content storage. As an example, the controller may
create rules so that only one switch store pair chunks and
another odds only. Thus Interest requests to the same content
may be divided between the two switches, dividing the load
on different links and cache in different switches. The control
plane can also offer an API for applications to request load
balancing services, enabling the network to offer customized
and open solutions for applications.

1) Proactive caching : To illustrate the benefits of proactive
content caching on the network using SDCCN, we set up
a scenario based on the experiment “Content Distribution
Efficiency” [1]. This experiment evaluates the content sharing
performance by comparing the total time to recovery simul-
taneously multiple copies of a 6MB file. Client nodes are
connected to a switch with a link of 1 Gbits and the file server
is connected through a link of 10 Mbits to the same switch.

Figure 5(a,b) illustrates the network topology. The node h1

acts as a content generator and the other nodes download
concurrently that content. Initially all nodes are connected
to the switch s1. Six rounds were carried out similarly to
the experiment “Content Distribution Efficiency”, explained
as follows: in Round 1, only one node expresses interest for
the content; in Round 2, two interests in the same content
simultaneously; in Round 3, three interests in the same content
simultaneously and so on.

The topology is configured for three architecture models: (i)
CCNx, using the testing environment created but using CCNx
nodes in place of switches; (ii) SDCCN, using the experi-
mental environment created with CCNx nodes and SDCCN
switches; (iii) TCP/IP, in a simulated network supporting the
TCP/IP stack. In CCN environments was used CCNx 0.8.2 and
ccnr, ccnputfile and ccngetfile tools to transfer a
6MB file between the producer and consumer nodes.

Besides the inclusion of a new switch and the addition of the
SDCCN architecture in the comparison, other modifications
were made to the experiment to explore the proactive content
caching in a mobility scenario. CS contents have not been
erased between rounds, keeping content in cache for subse-
quent requests of Interest. Before the last round, consumers
lose the connection to the switch s1 and connect to the
network just by connecting to s2. In CCNx network, s2 CS
will start empty and requests should pass through the 10Mbps
link. In SDCCN environment, the controller can anticipate the
migration and proactively orders the installation of contents
on the CS of the switch s2. It is worth mentioning here
that it does not necessarily required to make up a copy of
the whole content. Since the content is a file that is being
requested sequentially (in pieces, or chunks, according to the
CCN architecture), if prior to mobility the user is consuming
the piece x, it is possible to order s2 to proactive cache the
piece x + N . As the pieces have limited size, the copy time
of a piece between a cache and another will be very small,
which enables your copy during the mobility event.

For each round the cumulative time of content download
requested by all parties was calculated, that is, from the
beginning of the downloads of the round until the last Interest
of the round is satisfied. The experiment was repeated 5
times for averaging and confidence interval (confidence level
of 95 %). The comparison between the download time and
number of simultaneous downloads for TCP/IP, CCNx and
SDCCN environments can be seen in Figure 5(a,b). In TCP/IP
enviroment, contents have to take a longer way for all requests,
contents will traverse the 10 Mbps link to access the producer
h1. Thus, the higher the number of simultaneous downloads,
more this link will become saturated and greater the time
required for downloading. In CCN networks, during the first
request contents are cached in CS of s1. Thus, the remaining
requests for that content passing by s1 do not go through the
10Mbps link. As the 1Gbps link doest not get saturated, the
download time remains almost constant.

In the last round, the download time increased in CCNx
environment because the content that was in s1 is no longer
accessible by the 1Gbps link. So the content must go through

Fig. 6. Scenario considered to evaluate cache aggregation in SDCCN.

the 10Mbps link. In SDCCN environment, the download
time remained constant because the controller proactively
commands the copy of the contents of the cache in s1 to
s2 (Figure 5 (c)).

We can see that for the first request SDCCN solution
achieved a slightly worse response time than the original
CCNx. This is because the SDCCN switch is based on POF
switch, which lacks some optimizations for content routing.

2) Cache aggregation: In SDCCN architecture, cache ag-
gregation in central or common nodes can be done in a very
efficient way due to two features of the architecture: overview
of the network and cache programmability. SDCCN provides
an overview of the CCN network in the control plane. The
controller has knowledge of the network topology and the
content of the tables of all switches it manages. The cache
programmability enables the management of its CS and CRT
tables programmatically at runtime.

To demonstrate how cache aggregation can be explored
to improve networking cache efficiency, an experiment was
carried out whose topology is illustrated in Figure 6. Two
consumers request content simultaneously from a single pro-
ducer. All links have delay of 1ms except the link that connects
the switch s3 to the producer’s switch, which has a 10ms
delay. The three switches s1, s2 and s3 are managed by
the controller and cache content on the network. The other
switches only forward packets.

In this experiment two cache replacement algorithms were
set. In the first algorithm, the three switches cache all of the
contents generated by the Producer and each one performs
LRU independently, i.e. without being aware of the others.
The second one has an aggregation scheme. Only s1 and
s2 cache contents generated by Producer passing over the
network. Switch s3 only caches content when requested by
the controller, acting as an aggregator of common contents to
the two other switches. The cache replacement algorithm of
these switches works as follows:

1) s3’s CS data is queried and contents in s3 are removed
from s1 and s2.

2) Contents in s1 and s2 that aren’t in s3 are removed
from s1 and s2 and added to s3.

3) If CS utilization is still beyond the alert limit (for this
experiment, 45 entries), use LRU to remove contents.

The controller implements a scheme of “copy” of the
CS of the switches, so that they does not need to make
extra CACHE INFO requests. The switch s3 uses the LRU
algorithm to replace content in cache. This algorithm involving

(a) Initial setting of the created scenario. (b) The setting of the created scenario
after the migration of the clients to s2.

(c) Comparison of download time and number
of simultaneous downloads between TCP/IP and
CCN networks.

Fig. 5. Topology and Results for comparison of the download time in TCP/IP, CCN and SDCCN networks.

content aggregation via runtime queries is impossible to be
implemented in the CCN architecture without the addition of
new protocols, which would involve changes in switch code.
Ccnping and ccnpingserver tools for content gen-

eration between producer and consumer nodes. The CS of
the switches was limited to 50 entries and the threshold was
set to 45 entries. The limit of 50 entries represents 10% of
the maximum number of contents and was fixed because the
variation of α has the same purpose (frequency of generation
of popular content). The prefix was defined as “ccnx:/UFES”
and it was used with ccnping. Forwarding rules were added
to the FIBs and CRT. Content names have the same pattern
(ccnx:/UFES/[N]), where [N] is a positive integer randomly
generated using a Zipf-like distribution with α parameters
equal to 0.6, 0.7, 0.8, 0.9 and 1.0).

Figure 7 shows the comparison of the hit ratio of the net-
work cache for each value of α for both algorithms (LRU with
aggregation and without aggregation). The LRU algorithm
with aggregation obtained a considerably higher hit ratio for
all values of α. However, the difference tends to decrease when
α increasing. In Table II, the network cache hit ratio increases
19.12% on average, reaching up to 34% when α equals to 0.8.

Fig. 7. Comparison of the number of cache hits between LRU with and
without aggregation.

3) Load balancing: The goal of this experiment is to show
how SDCCN architecture is able to support this kind of
service, and the question here is not about the discussion of
optimal strategies of load balancing. In CCN features common
Interests are aggregated in the PIT during routing process. So
it is interesting that common requests are routed to the same

TABLE II
INCREASE OF THE AVERAGE RTT OF THE LRU WITH AGGREGATION

WHEN COMPARING WITH SIMPLE LRU.

path, increasing the possibility of aggregation in the PIT and
also the chance to get content from cache; and Content packet
goes through the same path of the corresponding Interest
packet. Thus, by balancing the Interest routing, the content
delivery will also be balanced.

From these observations, an experiment was set up in order
to demonstrate the facilities offered by SDCCN architecture
to provide load balancing services. Figure 8 illustrates the
environment set up for this experiment. The network consists
of four consumers who request contents of a single producer.
Consumers are connected to a load balancer switch that
distributes Interest packets among four switches. All switches
are controlled by the same controller but only the four core
switches are able to cache content.

Fig. 8. Architecture of the created scenario to demonstrate the facilities of
load balancing in SDCCN.

Two simulations to transfer a single file between consumers
and the producer were conducted. Each link has a delay of
10ms. The file was divided into 160 chunks of 8 bytes each.

Each consumer requests 3 chunks in parallel (operation similar
to a TCP window size of 3). CSs were limited to 50 entries to
fit all chunks in cache when divided equally by 3 switches and
the alert threshold was set to 49 entries. The switches applied
LRU algorithm for cache replacement.

For each simulation two load balancers were set up. The
first is a simple load balancer, which forwards each Interest
request related to file transfer to a different port (using round-
robin). This balancer does not require any intelligence and
functionality of the SDCCN architecture. The second one
divides chunks between the 4 core switches, maximizing
the chances of aggregation in PIT and CS. The division of
chunks is made throught the routing of Interests, which was
programmed as follows: requests for chunks ending in 0, 4
and 8 go to the first switch; requests for chunks ending in 1,
5 and 9 go to the second one; requests for chunks ending in
2 and 6 go to the third one and, finally requests for chunks
ending in 3 and 7 go to the fourth one.

The second balancer was implemented in SDCCN archi-
tecture without any modification to the data plane due to the
characteristics of the POF protocol. The bit mask functionality
was used, allowing only the content name prefix and the last
digit of the chunk to be evaluated during the FIB search. The
implementation of this balancer in the CCN architecture would
involve reprogramming CCN routers.

In the first experiment, consumers sequentially downloaded
the file located initially only in the producer. Table III presents
the average of the file transfer time between each consumer
and producer and the same average but excluding the first
transfer, as during this transfer there will be no cache hit.

From Table III we can also observe that there was a decrease
of 34% in the total transfer time when considering the first
transfer and 45% when disregarded this transfer. The cache hit
ratio of the first balancer was very low (approximately 0.175)
because the same chunks were routed to different paths in
many cases. As the second balancer forwards chunks to the
same path and all the chunk were divided between four core
switches, the cache hit ratio was in 100%.

TABLE III
COMPARISON BETWEEN THE LOAD BALANCERS DOWNLOAD TIME FOR

THE SEQUENCIAL FILE TRANSFER.

In the second experiment, all transfers were made simulta-
neously. The total transfer time was calculated as the interval
from the beginning of the transfers until the end of the last
transfer. The first balancer obtained a slightly higher transfer
time (approximately 3.86%) than the second one. Thus, the
benefit of the aggregate common Interests in PIT is lost,
increasing the number of contents sent by the producer and
thereby increasing the response time.

VI. CONCLUSION

Content-Centric Networking (CCN) promotes a better ab-
straction for the Internet use. However, one important problem
in the current Internet architecture was incorporated: experi-
mentation is still costly as they often involves reprogramming
the code of switches, cache decisions and routing strategies.
SDCCN represents a step foward in this direction. In this ap-
proach, control plane has a logically centralized controller and
the data plane is composed of CCN switches. The controller
program the routing tables and cache strategies. Content can
also be dynamically installed on a CCN switch to optimize
its delivery. In this paper, we also presented a experimental
environment created from Mininet to provide easy and fast
prototyping experimentation of SDCCN scenarios. Several
scenarios based on this environment were built to demonstrate
the benefits of the SDCCN architecture.

For future work, we plan to add security messages to the
implementation and provide a complete and otimized solution.
We also intend to study packet fragmentation strategies, to
propose new algorithms for inter-domain routing, to provide
implementations of the intra-domain algorithms currently used
(such as NSLR [13]) and to propose smarter cache strategies,
exploiting the advantage that the controller has a global view
of the network topology. Finally, we pretend to experiment
the solution with real hardware, such as Mikrotik/Routerboard
switches.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of
the 5th ACM CoNEXT, 2009, pp. 1–12.

[2] Cisco, “Cisco visual networking index: Forecast and methodology,
2014–2019,” 2014.

[3] A. Detti, N. Blefari Melazzi, S. Salsano, and M. Pomposini, “CONET:
A Content Centric Inter-networking Architecture,” in Proceedings of the
ACM SIGCOMM ICN, 2011, pp. 50–55.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[5] X. Nguyen, D. Saucez, and T. Turletti, “Providing CCN functionalities
over OpenFlow Switches,” Research Report, 2013.

[6] M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf, “Enabling
Information Centric Networking in IP Networks Using SDN,” in Pro-
ceedings of the IEEE SDN4FNS, Nov 2013, pp. 1–6.

[7] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal Cache
Allocation for Content-Centric Networking,” Proceedings of the IEEE
Intl. Conference on Network Protocols, 2013.

[8] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implications,” in
Proceedings of the IEEE INFOCOM, 1999, pp. 126–134.

[9] H. Song, “Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane,” in Proceedings of the Second
ACM SIGCOMM HotSDN, 2013, pp. 127–132.

[10] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in Proceedings of the 9th
ACM SIGCOMM Hotnets, 2010, pp. 19:1–19:6.

[11] (2015) Official implementation of the ccn model. [Online]. Available:
https://www.ccnx.org/.

[12] (2015) Named data networking github repository. [Online]. Available:
https://github.com/NDN-Routing/ccnping/

[13] A. K. M. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang,
and L. Wang, “NLSR: Named-data Link State Routing Protocol,” in
Proceedings of the 3rd ACM SIGCOMM ICN, 2013, pp. 15–20.

